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Abstract

We consider the orthogonal matching pursuit (OMP) algorithm for the recovery of a

high-dimensional sparse signal based on a small number of noisy linear measurements.

OMP is an iterative greedy algorithm that selects at each step the column which is

most correlated with the current residuals. In this paper, we present a fully data driven

OMP algorithm with explicit stopping rules. It is shown that under conditions on the

mutual incoherence and the minimum magnitude of the nonzero components of the

signal, the support of the signal can be recovered exactly by the OMP algorithm with

high probability. In addition, we also consider the problem of identifying significant

components in the case where some of the nonzero components are possibly small. It is

shown that in this case the OMP algorithm will still select all the significant components

before possibly selecting incorrect ones. Moreover, with modified stopping rules, the

OMP algorithm can ensure that no zero components are selected.

Keywords: Compressed sensing, `1 minimization, mutual incoherence, orthogonal match-

ing pursuit, signal reconstruction, support recovery.

1Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104,

USA; e-mail: tcai@wharton.upenn.edu. Research supported in part by NSF FRG Grant DMS-0854973.
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

e-mail: liewang@math.mit.edu. Research supported by NSF Grant DMS-1005539.

1



1 Introduction

Recovery of a high-dimensional sparse signal based on a small number of linear measure-

ments, possibly corrupted by noise, is a fundamental problem in signal processing. Specif-

ically one considers the following model:

y = Xβ + ε, (1)

where the observation y ∈ IRn, the matrix X ∈ IRn×p, and the measurement errors ε ∈

IRn. Suppose X = (X1, X2, · · · , Xp) where Xi denotes the ith column of X. Throughout

the paper we shall assume that the columns of X are normalized, i.e. ‖Xi‖2 = 1 for

i = 1, 2, · · · , p. The goal is to reconstruct the unknown vector β ∈ IRp based on y and

X. A setting that is of significant interest and challenge is when the dimension p of the

signal is much larger than the number of measurements n. This and other related problems

have received much recent attention in a number of fields including applied mathematics,

electrical engineering, and statistics.

For a vector β = (β1, · · · , βp) ∈ IRp, the support of β is defined to be the set supp(β) =

{i : βi 6= 0} and β is said to be k-sparse if |supp(β)| ≤ k. A widely used framework for

sparse signal recovery is the Mutual Incoherence Property (MIP) introduced in Donoho and

Huo (2001). The mutual incoherence is defined by

µ = max
i6=j

|〈Xi, Xj〉|. (2)

The MIP requires the mutual incoherence µ to be small. Other conditions used in the

compressed sensing literature include the Restricted Isometry Property (RIP) and Exact

Recovery Condition (ERC). See, for example, Candes and Tao (2005) and Tropp (2004). In

contrast to the MIP, these conditions are not computationally feasible to verify for a given

matrix X.

2



In the present paper we consider the orthogonal matching pursuit (OMP) algorithm

for the recovery of the support of the k-sparse signal β under the model (1). OMP is

an iterative greedy algorithm that selects at each step the column of X which is most

correlated with the current residuals. This column is then added into the set of selected

columns. The algorithm updates the residuals by projecting the observation y onto the

linear subspace spanned by the columns that have already been selected, and the algorithm

then iterates. Compared with other alternative methods, a major advantage of the OMP

is its simplicity and fast implementation. This method has been used for signal recovery

and approximation, for example, in Davis, Mallat, and Avellaneda (1997), Tropp (2004,

2006), and Barron et al. (2008). In particular, support recovery has been considered in the

noiseless case by Tropp (2004), where it was shown that µ < 1
2k−1 is a sufficient condition

for recovering a k-sparse β exactly in the noiseless case. Results in Cai, Wang and Xu

(2010a) imply that this condition is in fact sharp.

In this paper we consider the OMP algorithm in the general setting where noise is

present. Note that the residuals after each step in the OMP algorithm are orthogonal to all

the selected columns of X, so no column is selected twice and the set of selected columns

grows at each step. One of the key components of an iterative procedure like OMP is the

stopping rule. Specific stopping rules are given for the OMP algorithm in both bounded

noise and Gaussian noise cases. The algorithm is then fully data-driven. Our results show

that under the MIP condition µ < 1
2k−1 and a condition on the minimum magnitude of the

nonzero coordinates of β, the support of β can be recovered exactly by the OMP algorithm

in the bounded noise cases and with high probability in the Gaussian case. In fact, it can

be seen from our discussion in Section 3 that a more general condition than µ < 1
2k−1 can

guarantee the recovery of the support with high probability. In particular, all the main

results hold under the Exact Recovery Condition (ERC).
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In many applications, the focus is often on identifying significant components, i.e.,

coordinates of β with large magnitude, instead of the often too ambitious goal of recovering

the whole support of β exactly. In this paper, we also consider the problem of identifying

large coordinates of β in the case where some of the nonzero coordinates are possibly small.

It is shown that in this case the OMP algorithm will still select all the most important

components before possibly selecting incorrect ones. In addition, with modified stopping

rules, the OMP algorithm can ensure that no zero components are selected.

Besides OMP, several other methods for sparse signal recovery have been proposed and

extensively studied in the literature. In particular, it is now well understood that `1 mini-

mization methods provide effective ways for reconstructing a sparse signal. For example, the

`1 penalized least squares (Lasso) estimator has been studied in Tibshirani (1996), Chen,

Donoho and Saunders (1998), and Efron et al. (2004). Zhao and Yu (2006) considered

support recovery using the Lasso. In addition, two specific constrained `1 minimization

methods have been well studied. Donoho, Elad, and Temlyakov (2006) considered con-

strained `1 minimization under an `2 constraint. Candes and Tao (2007) introduced the

Dantzig Selector, which is a constrained `1 minimization method under an `∞ constraint.

A particularly simple and elementary analysis of constrained `1 minimization methods is

given in Cai, Wang, and Xu (2010b). Bickel, Ritov and Tsybakov (2009) gives a unified

treatment of the Lasso and Dantzig Selector.

Compare with the known results on the model selection consistency of the Lasso in the

Gausian noise case given in Zhao and Yu (2006), the condition on the minimum magnitude

of the nonzero coordinates of β is much weaker for OMP than for the Lasso. More detailed

discussion can be found in Section 3. This together with the computational simplicity make

OMP a very appealing method for support recovery.

The rest of the paper is organized as follows. We will begin in Section 2 with a detailed
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description of the OMP algorithm. The stopping rules and the properties of the algorithm

are considered in Section 3 for both bounded noise cases and Gaussian noise case. The

theoretical results are first formulated under the MIP. Section 4 discusses the corresponding

results under the ERC and compares our results with some of existing ones in the literature.

Section 5 provides some technical analysis of the OMP algorithm which sheds light on how

and when the OMP algorithm works properly. The proofs of the main results are contained

in Section 6.

2 The OMP Algorithm

In this section we give a detailed description of the orthogonal matching pursuit (OMP)

algorithm. We assume that the columns of X are normalized so that ‖Xi‖2 = 1 for i =

1, 2, · · · , p. For any subset S ⊆ {1, 2, ..., p}, denote by X(S) a submatrix of X consisting

of the columns Xi with i ∈ S. In this paper we shall also call columns of X variables by

following the convention in statistics. Thus we use Xi to denote the both ith column of

X and the ith variable of the model. Following the same convention, we shall call Xi a

correct variable if the corresponding βi 6= 0 and call Xi an incorrect variable otherwise.

With slight abuse of notation, we shall use X(S) to denote both the subset of columns of

X with indices in S and the corresponding submatrix of X.

The OMP algorithm can be stated as follows.

• Step 1: Initialize the residual r0 = y and initialize the set of selected variable X(c0) =

∅. Let iteration counter i = 1.

• Step 2: Find the variable Xti that solves the maximization problem

max
t
|X ′

tri−1|

and add the variable Xti to the set of selected variables. Update ci = ci−1 ∪ {ti}.
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• Step 3: Let Pi = X(ci)(X(ci)′X(ci))−1X(ci)′ denote the projection onto the linear

space spanned by the elements of X(ci). Update ri = (I − Pi)y.

• Step 4: If the stopping condition is achieved, stop the algorithm. Otherwise, set

i = i + 1 and return to Step 2.

The OMP is a stepwise forward selection algorithm and is easy to implement. A key

component of OMP is the stopping rule which depends on the noise structure. In the

noiseless case the natural stopping rule is ri = 0. That is, the algorithm stops whenever

ri = 0 is achieved. In this paper, we shall consider several different noise structures. To

be more specific, two types of bounded noise are considered. One is `2 bounded noise, i.e.,

‖ε‖2 ≤ b2 for some constant b2 > 0. Another is `∞ bounded noise where ‖X ′ε‖∞ ≤ b∞ for

some constant b∞ > 0. In addition, we shall also consider the important case of Gaussian

noise where εi
iid∼ N(0, σ2). The stopping rule for each case and the properties of the

resulting procedure will be discussed in Section 3.

3 The OMP Algorithm: Stopping Rules and Properties

In this section we discuss the stopping rules and investigate the properties of the OMP

algorithm for the bounded noise cases as well as the Gaussian noise case. Results for the

noiseless case can be found in Tropp (2004).

We begin with the basic notation and definitions. The mutual incoherence of X, defined

in (2), is the maximum magnitude of the pairwise correlation between the columns of X.

Let T = {i : βi 6= 0} be the support of β and let X(T ) be the set of columns of X

corresponding to the support T . Define

M = max
x∈X\X(T )

{‖(X(T )′X(T ))−1X(T )′x‖1}. (3)

The condition
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(ERC) M < 1

is called the Exact Recovery Condition (ERC) in Tropp (2004). It was shown in Tropp

(2004) that the ERC is a sufficient condition for the exact recovery of the support of the

signal β in the noiseless case. It is easy to see that the value of M is not computable as

it depends on the unknown support T . However, it can be easily bounded in terms of the

mutual incoherence µ.

Lemma 1 If µ < 1
2k−1 , then M ≤ kµ

1−(k−1)µ < 1.

This lemma is a special case of Theorem 3.5 in Tropp (2004). The extreme eigenvalues of

X(T )′X(T ) are also useful. Denote the minimum and maximum eigenvalues of X(T )′X(T )

by λmin and λmax respectively. The minimum eigenvalue λmin is a key quantity to the

sparse signal recovery problem. It has been used in, for example, Zhao and Yu (2006) and

Cai, Wang and Xu (2010b). Note that λmin is usually assumed to be bounded away from

zero. In particular, the ERC M < 1 requires λmin > 0. The following lemma shows that

λmin and λmax can also be bounded in terms of µ. A similar, but slightly weaker result was

given in Needell and Tropp (2008).

Lemma 2 Suppose µ < 1
k−1 , then 1 − (k − 1)µ ≤ λmin ≤ λmax ≤ 1 + (k − 1)µ, where k

denotes the cardinality of T .

It is easy to see that, in order for any variable selection procedure to work properly, both

the degree of collinearity among the columns of X and the signal-to-noise ratio need to be

properly controlled. Generally speaking, to recover accurately the support of the unknown

signal, the degree of linear dependency among the Xi’s needs to be small, otherwise the

effects of the variables cannot be well separated. On the other hand, the signal-to-noise

ratio needs to be sufficiently high in order for the significant variables to be selected. In

the case of OMP, the performance of the algorithm depends on the probability of selecting
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a correct variable at each step. This probability is affected by the degree of collinearity

among the variables and the noise structure.

We shall begin with the bounded noise cases and then consider the Gaussian case. As

mentioned in Section 2, two types of bound noise are considered: ‖ε‖2 ≤ b2 and ‖X ′ε‖∞ ≤

b∞. Once the bounded noise cases are understood, the Gaussian case follows easily. In

what follows, our analysis of the OMP algorithm will be carried out in terms of the mutual

incoherence µ. However, all the main results also hold under the ERC with essentially the

same proofs. We shall focus on the MIP in the next section and discuss the results under

the ERC M < 1 in Section 4.

3.1 `2 Bounded Noise

We first consider the case where the error vector ε is bounded in `2 norm with ‖ε‖2 ≤ b2.

In this case we set the stopping rule as ‖ri‖2 ≤ b2. It is intuitively easy to see that this

rule is reasonable because in the special case of β ≡ 0 the stopping rule will guarantee that

OMP does not select any incorrect variables. We have the following result for OMP with

this stopping rule.

Theorem 1 Suppose ‖ε‖2 ≤ b2 and µ < 1
2k−1 . Then the OMP algorithm with the stopping

rule ‖ri‖2 ≤ b2 recovers exactly the true subset of correct variables X(T ) if all the nonzero

coefficients βi satisfy |βi| ≥ 2b2
1−(2k−1)µ .

Theorem 1 and other main results given in this paper can also be stated under the ERC

M < 1. We formally restate Theorem 1 under the ERC below and only make brief remarks

for the other results later. See Section 4 for more discussions.

Proposition 1 Suppose ‖ε‖2 ≤ b2 and M < 1. Then the OMP algorithm with the stopping

rule ‖ri‖2 ≤ b2 recovers exactly the true subset of correct variables X(T ) if all the nonzero

coefficients βi satisfy |βi| ≥ 2b2
(1−M)λmin

.
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This follows from essentially the same argument as the proof of Theorem 1 given in

Section 6.

It is worth noting that after the OMP algorithm returns the true subset X(T ), the signal

β can be easily estimated, for example, by using the ordinary least squares regression on

the subset of variables X(T ).

Theorem 1 has two conditions, µ < 1
2k−1 and |βi| ≥ 2b2

1−(2k−1)µ , which together ensure the

OMP algorithm to recover exactly the true support of the signal. The condition µ < 1
2k−1

was shown to be sharp in the noisy case in Cai, Wang and Xu (2010a). The other condition

|βi| ≥ 2b2
1−(2k−1)µ for all nonzero coefficient βi is to ensure that all significant variables are

selected.

In many applications, the focus is often on identifying coordinates of β with large mag-

nitude or equivalently variables with significant effects, instead of the often too ambitious

goal of recovering the whole support of β exactly. So a practically interesting question is:

Can OMP identify coordinates with large magnitude when some of the nonzero coordinates

βi are small? The following result shows that the OMP algorithm with the same stopping

rule will still select all the most important variables before it possibly also selects incorrect

ones.

Theorem 2 Suppose ‖ε‖2 ≤ b2 and µ < 1
2k−1 . Let

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ 2

√
kb2

1− (2k − 1)µ

}
.

Then the OMP algorithm with the stopping rule ‖ri‖2 ≤ b2 selects a correct variable at each

step until all the variables in S are selected.

Remark 1 Similar to Theorem 1, Theorem 2 can also be stated under the ERC with the

condition µ < 1
2k−1 replaced by M < 1, and the condition on the minimum magnitude of

βi in the set S replaced by |βi| > 2
√

kb2
(1−M)λmin

. See Section 4 for more discussions.
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In many applications, it is often desirable to select a subset of the support of the signal

β without incorrectly selecting any coordinates outside of the support. The OMP algorithm

with the stopping rule ‖ri‖2 ≤ b2 does not rule out the possibility of incorrectly selecting

a zero coordinate after all the significant ones are selected. The OMP with a modified

stopping rule can ensure that no zero coordinates are selected. We have the following

result.

Theorem 3 Suppose ‖ε‖2 ≤ b2 and µ < 1
2k−1 . Let

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ (

(1 + (k − 1)µ)2
√

k

(1− (k − 1)µ)(1− (2k − 1)µ)
+

2
1− (k − 1)µ

)b2

}
.

Then OMP with the stopping rule ‖ri‖2 ≤ (1+ (1+(k−1)µ)2
√

k
1−(2k−1)µ )b2 selects a subset T̂ such that

S ⊂ T̂ ⊂ T .

Hence, all the significant variables in S are selected by the algorithm and all the selected

coordinates are in the support of β.

3.2 `∞ Bounded Noise

We now turn to the case where the noise ε is assumed to satisfying ‖X ′ε‖∞ ≤ b∞. The

stopping rule in this case is ‖X ′ri‖∞ ≤ b∞. Similar to the previous case this is a natural

stopping rule which ensures that no incorrect variables are selected in the special case of

β ≡ 0. We have the following result for OMP with this stopping rule.

Theorem 4 Suppose ‖X ′ε‖∞ ≤ b∞ and µ < 1
2k−1 . Moreover, assume all the nonzero

coefficients βi satisfy

|βi| ≥ 2b∞
1− (2k − 1)µ

(1 +

√
k√

1− (k − 1)µ
).

Then OMP with the stopping rule ‖X ′ri‖∞ ≤ b∞ will return the true subset X(T ).
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Remark 2 Note that µ < 1
2k−1 implies (k − 1)µ < 1

2 . So a special case of the previous

theorem is that when

|βi| ≥ 2(1 +
√

2k)b∞
1− (2k − 1)µ

,

the OMP algorithm selects the true subset of significant variables X(T ).

As in the `2 bounded noise case, when some of the nonzero coordinates are small, OMP

can also identify all the large components in this case. To be more precise, we have the

following result.

Theorem 5 Suppose ‖X ′ε‖∞ ≤ b∞ and µ < 1
2k−1 . Let

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ 2

√
kb∞

1− (2k − 1)µ
(1 +

√
k√

1− (k − 1)µ
)

}
.

Then the OMP algorithm selects a correct variable at each step until all the variables in S

are selected.

In addition, with a modified stopping rule, OMP can also ensure that no incorrect

variables are selected in this case.

Theorem 6 Suppose ‖X ′ε‖∞ ≤ b∞ and µ < 1
2k−1 . Let

S =
{

Xi : 1 ≤ i ≤ p, |βi| ≥ (
6k

1− (2k − 1)µ
+ 4

√
k)(1 +

√
2k)b∞

}
.

Then OMP with the stopping rule

‖X ′ri‖∞ ≤ (1 +
2
√

k(1 + (k − 1)µ)
1− (2k − 1)µ

)Cb∞,

selects a subset T̂ such that S ⊂ T̂ ⊂ T , where the constant C is given by C = 1+
√

k√
1−(k−1)µ

.

Remark 3 It will be shown that in fact a stronger result holds. Theorem 6 is true with

the set S enlarged to

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ (

2k(1 + (k − 1)µ)
(1− (k − 1)µ)(1− (2k − 1)µ)

+
2
√

k

1− (k − 1)µ
)Cb∞

}
,

where C = 1 +
√

k√
1−(k−1)µ

.
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3.3 Gaussian Noise

The Gaussian noise case is of particular interest in statistics. The results on the bounded

noise cases given earlier are directly applicable to the case where noise is Gaussian. This is

due to the fact that Gaussian noise is “essentially bounded”.

Suppose now the noise vector ε follows Gaussian distribution, ε ∼ N(0, σ2In). Define

two bounded sets

B2 =
{

ε : ‖ε‖2 ≤ σ

√
n + 2

√
n log n

}
and B∞(η) =

{
ε : ‖XT ε‖∞ ≤ σ

√
2(1 + η) log p

}

where η ≥ 0. The following result, which follows from standard probability calculations,

shows that the Gaussian noise z is essentially bounded. The readers are referred to Cai,

Xu and Zhang (2009) for a proof.

Lemma 3 The Gaussian error ε ∼ N(0, σ2In) satisfies

P (ε ∈ B2) ≥ 1− 1
n

and P (ε ∈ B∞(η)) ≥ 1− 1
2pη

√
π log p

. (4)

The following result is a direct consequence of the results for `2 bounded noise case.

Theorem 7 Suppose ε ∼ N(0, σ2In), µ < 1
2k−1 and all the nonzero coefficients βi satisfy

|βi| ≥ 2σ
√

n + 2
√

n log n

1− (2k − 1)µ
. (5)

Then OMP with the stopping rule ‖ri‖2 ≤ σ
√

n + 2
√

n log n selects the true subset X(T )

with probability at least 1− 1/n.

One can also directly apply the results for `∞ bounded noise case to the Gaussian case. In

fact, a stronger result holds.

Theorem 8 Suppose ε ∼ N(0, σ2In), µ < 1
2k−1 and all the nonzero coefficients βi satisfy

|βi| ≥ 2σ
√

2(1 + η) log p

1− (2k − 1)µ
(6)
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for some η ≥ 0. Then OMP with the stopping rule ‖X ′ri‖∞ ≤ σ
√

2(1 + η) log p selects

exactly the correct subset X(T ) with probability at least 1− k/pη
√

2 log p.

Remark 4 The conditions in the previous Theorem can also be reformulated in terms of

M and λmin. Suppose M < 1 and λmin > 0, then the OMP algorithm can recovery the

true support of β with high probability when each nonzero coefficient βi satisfies

|βi| ≥ 2σ
√

2(1 + η)) log p

(1−M)λmin
. (7)

Remark 5 After the OMP algorithm returns the estimated subset, one can use the ordi-

nary least squares to further estimate the values of the nonzero coordinates of β. Then

with high probability, mean squared error of the resulting estimator will be the same as the

case when the true support of β were known.

It is interesting to compare the results given above with some of the known results in

the literature based on other methods. As mentioned in the introduction, `1 minimization

methods are widely used for reconstructing a sparse signal as well as for support recov-

ery. In particular, Zhao and Yu (2006) considered the model selection consistency of the

Lasso and introduced the Irrepresentable Condition. First, it is worth noting that if the

Irrepresentable Condition holds for every k-sparse signal β ∈ IRp, then it is equivalent

to the ERC. This can be explained as follows. The Irrepresentable Condition requires

‖X(U)′X(T )(X(T )′X(T ))−1sign(β(T ))‖∞ < 1, where U = {i : βi = 0} and β(T ) denotes

the k dimensional subvector that only keeps the nonzero coordinates of β. If the Irrep-

resentable Condition holds for every β(T ) ∈ IRk, then the sum of absolute value of each

column of the matrix (X(T )′X(T ))−1X(T )′X(U) must be less than 1, which is equivalent to

the ERC. Also, for the Lasso estimator to be sign consistent, the minimum eigenvalue λmin

must be positive as we remarked earlier. In Zhao and Yu (2006), the order of magnitude

of all the nonzero coefficients βi are required to be at least n(1+c)/2 for some c > 0. This
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condition is much stronger than Condition (6) that is required in Theorem 8 or Condition

(7) under the ERC. It is also stronger than Condition (5) used in Theorem 7.

If not all nonzero coordinates of β are large, then the OMP algorithm can still select

all the significant coordinates of β with high probability. More specifically, we have the

following result.

Theorem 9 Suppose ε ∼ N(0, σ2In), µ < 1
2k−1 and let

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ 2

√
kσ

√
2(1 + η) log p

1− (2k − 1)µ

}
.

Then the OMP algorithm selects a correct variable at each step with probability at least

1− 1/pη
√

2 log p until all the variables in S are selected.

As mentioned earlier, it is sometimes desirable to select a subset of the significant variables

without selecting any incorrect variables. By modifying the stopping rule in the Gaussian

noise case, it is possible to ensure that with high probability OMP only selects the significant

variables and does not select incorrect variables. More specifically, we have the following

theorem.

Theorem 10 Suppose ε ∼ N(0, σ2In), µ < 1
2k−1 and let

S =
{

Xi : 1 ≤ i ≤ p, |βi| ≥ (
6k

1− (2k − 1)µ
+ 4

√
k)(1 +

√
2k)

√
2(1 + η) log p

}
.

Then the OMP algorithm returns a subset T̂ such that S ⊂ T̂ ⊂ T with probability at least

1− 1/pη
√

2 log p.

4 Discussions

The analysis of the OMP algorithm given in Section 3 is given under the MIP condition

µ < 1
2k−1 . As mentioned earlier, the main results can all be reformulated under the ERC
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M < 1. The reason we use the MIP condition is that the mutual incoherence µ is a

computable quantity, while M is not as it depends on the unknown support T . A precise

restatement of Theorem 1 under the ERC was given in Proposition 1 and a brief comment

was given for Theorem 2. We now discuss other results under the ERC.

Theorem 3 holds under the ERC and the result can be restated as follows. Suppose

‖ε‖2 ≤ b2 and M < 1. Let

S =

{
Xi : 1 ≤ i ≤ p, |βi| ≥ (

2
√

kλmax

(1−M)λ2
min

+
2

λmin
)b2

}
.

Then the OMP algorithm with the stopping rule ‖ri‖2 ≤ (1+ 2
√

kλmax
(1−M)λmin

)b2 selects a subset

T̂ such that S ⊂ T̂ ⊂ T . Similar to Theorem 1, Theorem 4 is also true if the MIP condition

µ < 1
2k−1 is replaced by M < 1 and the lower bound on the magnitude of the nonzero βi is

changed to |βi| ≥ 2(1+
√

2k)b∞
(1−M)λmin

. Other main results can also be restated in terms of the ERC

in a similar way.

It is useful to compare our results with some of the known results in the literature.

Donoho, Elad and Temlyakov (2006) considered the OMP algorithm for the noiseless and

`2 bounded noise cases. It was shown that OMP can recover the support of the signal when

µ ≤ 1
2k−1(1− 2b2

βmin
), where βmin = mini{|βi| : βi 6= 0}, whereas only µ < 1

2k−1 is required in

all of our results. As shown in Cai, Wang and Xu (2010a) the condition µ < 1
2k−1 is sharp

in the sense that there exists a design matrix X with the mutual incoherence µ = 1
2k−1 such

that certain k-sparse signals are not identifiable based on y and X in the noiseless case.

Moreover, we also considered the case where no lower bound is assumed on the magnitude

of the nonzero coordinates of β. It is shown in this setting that OMP is still able to identify

the significant components before possibly selecting the incorrect ones.

Zhang (2009) considered model selection consistency of the OMP algorithm and showed

that under suitable stopping conditions, OMP will return a subset of the true support and

the number of unselected nonzero components can be bounded. In the present paper
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we show that under a different stopping rule, OMP not only returns a subset of the true

support, but also guarantees that all the significant components are selected. The advantage

is that with our stopping rule, the algorithm will not ignore any components with large

values. This is an important property for many applications. Moreover, with the same

probability of identifying the true support, the lower bound on the magnitude of the nonzero

coordinates for our method is smaller than what is required in Zhang (2009). For example,

when the probability of identifying the true support is set to be 1− k/pη
√

2 log p, then the

lower bound of nonzero |βi| is 2σ
√

2(1+η)) log p

(1−M)λmin
(see Theorem 8), while the lower bound given

in Zhang (2009) is 3σ
√

2((1+η)) log p+log(4
√

2 log p/k))
(1−M)λmin

.

Finally, we note that Lounici (2008) considered the properties of the LASSO and Dantzig

selector under the MIP conditions. It was showed that when the mutual incoherence is

sufficiently small both the LASSO and Dantzig selector have desirable variable selection

properties. The MIP condition used in Lounici (2008) is µ < 1
3k for the Dantzig selector

and µ < 1
5k for the LASSO. In comparison, our condition, µ < 1

2k−1 , is clearly weaker than

both of them and as we mentioned earlier this condition is sharp. In addition, the analysis

given in the present paper on variable selection is much more detailed.

5 Understanding the OMP Algorithm

We shall prove all the main results in Section 6. To gain insight on the OMP algorithm and

to illustrate the main ideas behind the proofs, it is instructive to provide some technical

analysis of the algorithm. The analysis sheds light on how and when the OMP algorithm

works properly.

Note that the support T = {i : βi 6= 0} and the set of significant or “correct” variables is

X(T ) = {Xi : i ∈ T}. At each step of the OMP algorithm, the residual vector is projected

onto the space spanned by the selected variables (columns of X). Suppose the algorithm
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selects the correct variables at the first t steps and the set of all selected variables at the

current step is X(ct). Then X(ct) contains t variables and X(ct) ⊂ X(T ). Recall that

Pt = X(ct)(X(ct)′X(ct))−1X(ct)′ is the projection operator onto the linear space spanned

by the elements of X(ct). Then the residual after t steps can be written as

rt = (I − Pt)y = (I − Pt)Xβ + (I − Pt)ε ≡ st + nt

where st = (I −Pt)Xβ is the signal part of the residual and nt = (I −Pt)ε is the noise part

of the residual. Let

Mt,1 = max
x∈X(T )

{|x′st|}, Mt,2 = max
x∈X\X(T )

{|x′st|} (8)

and

Nt = max
x∈X

{|x′nt|}.

It is clear that in order for OMP to select a correct variable at this step, it is necessary to

have maxx∈X(T ){|x′rt|} > maxx∈X\X(T ){|x′rt|}. A sufficient condition is Mt,1−Mt,2 > 2Nt.

This is because Mt,1 −Mt,2 > 2Nt implies

max
x∈X(T )

{|x′rt|} ≥ Mt,1 −Nt > Mt,2 + Nt ≥ max
x∈X\X(T )

{|x′rt|}.

We first focus on the value of Mt,1 −Mt,2. The following result is due to Tropp (2004).

Lemma 4 Let M be defined as in (3) and let Mt,1 and Mt,2 be defined as in (8). Then

MMt,1 > Mt,2 for all t.

Note that M < 1 is the Exact Recovery Condition. From this lemma, we know that

Mt,1 − Mt,2 > (1 − M)Mt,1. The previous discussion shows that Mt,1 > 2
1−M Nt is a

sufficient condition under which OMP will make a correct decision. Then from Lemma 1

that the condition

Mt,1 > 2
1− (k − 1)µ
1− (2k − 1)µ

Nt (9)
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guarantees that the OMP algorithm selects a correct variable at the current step. Let

X(ut) = X(T ) \X(ct) denote the set of significant variables that are yet to be selected and

let β(ut) denote the corresponding linear coefficients, then Mt,1 = ‖X(ut)′st‖∞. Note that

Mt,1 = ‖X(ut)′st‖∞ = ‖X(ut)′(I − Pt)Xβ‖∞ = ‖X(ut)′(I − Pt)X(ut)β(ut)‖∞.

The following lemma, which is proved in Section 6, can be used to further bound Mt,1.

Lemma 5 The minimum eigenvalue of X(T )′X(T ) is less than or equal to the minimum

eigenvalue of X(ut)′(I−Pt)X(ut). The maximum eigenvalue of X(T )′X(T ) is greater than

or equal to the maximum eigenvalue of X(ut)′(I − Pt)X(ut).

It then follows immediately that ‖X(ut)′(I − Pt)X(ut)β(ut)‖2 ≥ λmin‖β(ut)‖2. Lemma 2

now yields

Mt,1 ≥ (k−t)−1/2‖X(ut)′st‖2 ≥ (k−t)−1/2λmin‖β(ut)‖2 ≥ (k−t)−1/2(1−(k−1)µ)‖β(ut)‖2.

This and equation (9) show that a sufficient condition for selecting a correct variable at the

current step is

‖β(ut)‖2 >
2
√

k − tNt

1− (2k − 1)µ
. (10)

Or mode generally,

‖β(ut)‖2 >
2
√

k − tNt

(1−M)λminµ
. (11)

This means that if any of remaining coefficients is large enough, then OMP will select

a correct variable at this step. For example, if there exists an unselected variable βi with

|βi| > 2
√

kNt
1−(2k−1)µ , then a correct variable would be selected. Also, if all the remaining

coefficients are relatively large, i.e. |βi| > 2Nt
1−(2k−1)µ for all i ∈ T , then (10) is satisfied

and OMP will select a correct variable at this step. The value of Nt depends on the noise

structure and different bounds will be used for different cases in Section 6.
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6 Proofs

In this section we shall prove the main results in the order of Theorems 1, 3, 4, 6, and 8.

The proofs of the other theorems are similar and are thus omitted. Some of the technical

lemmas are proved at the end.

6.1 Proof of Theorem 1

It follows from the assumption ‖ε‖2 ≤ b2 that

‖nt‖2 = ‖(I − Pt)ε‖2 ≤ ‖ε‖2 ≤ b2.

Let Xi be any column of X. Then

|X ′
int| ≤ ‖Xi‖2‖nt‖2 ≤ b2.

This means Nt ≤ b2. It follows from (10) that for any t < k, ‖β(ut)‖2 > 2
√

k−tNt

1−(2k−1)µ implies

that a correct variable will be selected at this step. So |βi| ≥ 2b2
1−(2k−1)µ for all nonzero

coefficients βi ensures that all the k correct variables will be selected in the first k steps.

Let us now turn to the stopping rule. Let Pk denote the projection onto the linear space

spanned by X(T ). Then ‖(I − Pk)ε‖2 ≤ ‖ε‖2 ≤ b2. So when all the k correct variables are

selected, the `2 norm of the residual will be less than b2, and hence the algorithm stops. It

remains to be shown that the OMP algorithm does not stop early.

Suppose the algorithm has run t steps for some t < k. We will verify that ‖rt‖2 > b2 and

so OMP does not stop at the current step. Again, let X(ut) denote the set of unselected

but correct variable and β(ut) be the corresponding coefficients. Note that

‖rt‖2 = ‖(I − Pt)Xβ + (I − Pt)ε‖2

≥ ‖(I − Pt)Xβ‖2 − ‖(I − Pt)ε‖2 ≥ ‖(I − Pt)X(ut)β(ut)‖2 − b2
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It follows from Lemma 5 that

‖(I − Pt)X(ut)β(ut)‖2 ≥ λmin‖β(ut)‖2 ≥ (1− (k − 1)µ)
2b2

1− (2k − 1)µ
> 2b2.

So

‖rt‖2 ≥ ‖(I − Pt)X(ut)β(ut)‖2 − b2 > b2

and the theorem is proved.

6.2 Proof of Theorem 3

From the proof of Theorem 1, we know that

‖rt‖2 ≥ λmin‖β(ut)‖2 − b2 ≥ (1− (k − 1)µ)‖β(ut)‖2 − b2.

On the other hand,

‖rt‖2 = ‖(I − Pt)Xβ + (I − Pt)ε‖2 ≤ ‖(I − Pt)X(ut)β(ut)‖2 + b2

≤ λmax‖β(ut)‖2 + b2 ≤ (1 + (k − 1)µ)‖β(ut)‖2 + b2.

So

‖rt‖2 − b2

1 + (k − 1)µ
≤ ‖β(ut)‖2 ≤ ‖rt‖2 + b2

1− (k − 1)µ
.

Since the stopping rule is to check whether ‖ri‖2 ≤ (1 + (1+(k−1)µ)2
√

k
1−(2k−1)µ )b2, we know that

when the stopping rule is not satisfied

‖β(ut)‖2 ≥ 2
√

kb2

1− (2k − 1)µ
.

From the previous discussion, this means OMP will select a correct variable at this step.

When the stopping rule is satisfied,

‖β(ut)‖2 ≤ (
(1 + (k − 1)µ)2

√
k

(1− (k − 1)µ)(1− (2k − 1)µ)
+

2
1− (k − 1)µ

)b2,

and so all the variables in the set S = {Xi : 1 ≤ i ≤ p, |βi| ≥ ( (1+(k−1)µ)2
√

k
(1−(k−1)µ)(1−(2k−1)µ) +

2
1−(k−1)µ)b2} have been selected.
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6.3 Proof of Theorem 4

Since ‖X ′ε‖∞ ≤ b∞ and λmin ≥ 1− (k − 1)µ, for any t < k

‖Ptε‖2
2 = ε′X(ct)(X(ct)′X(ct))−1X(ct)′ε ≤ 1

λmin
‖X(ct)′ε‖2

2 ≤
tb2∞

1− (k − 1)µ
.

Let Xi be any column of X. Then

|X ′
int| = |X ′

i(I − Pt)ε| ≤ |X ′
iε|+ |X ′

iPtε| ≤ b∞ +
√

tb∞√
1− (k − 1)µ

,

which implies

Nt ≤ (1 +
√

t√
1− (k − 1)µ

)b∞.

Now since

|βi| ≥ 2b∞
1− (2k − 1)µ

(1 +

√
k√

1− (k − 1)µ
),

we have ‖β(ut)‖2 > 2
√

k−tNt

1−(2k−1)µ , which ensures that OMP selects a correct variable at this

step.

We now turn to the stopping rule. It suffices to prove that for any t < k, ‖X ′rt‖∞ > b∞

and so the algorithm does not stop early. It can be seen that

‖X ′rt‖∞ = ‖X ′(I − Pt)Xβ + X ′(I − Pt)ε‖∞

≥ ‖X(ut)′(I − Pt)X(ut)β(ut)‖∞ − ‖X(ut)′(I − Pt)ε‖∞

≥ 1√
k − t

‖X(ut)′(I − Pt)X(ut)β(ut)‖2 − (1 +
√

t√
1− (k − 1)µ

)b∞

≥ 1√
k − t

λmin‖β(ut)‖2 − (1 +
√

t√
1− (k − 1)µ

)b∞

≥ (1 +
√

t√
1− (k − 1)µ

)b∞ > b∞

and the theorem then follows.

21



6.4 Proof of Theorem 6

The proof of this theorem is similar to that of Theorem 3. Note that

‖X ′rt‖∞ − Cb∞
1 + (k − 1)µ

≤ ‖β(ut)‖2 ≤ ‖X ′rt‖∞ + Cb∞
1− (k − 1)µ

√
k,

where C = 1 +
√

k√
1−(k−1)µ

. This ensures that if the stopping rule is not satisfied, i.e.

‖X ′ri‖∞ > (1 +
2
√

k(1 + (k − 1)µ)
1− (2k − 1)µ

)Cb∞,

then ‖β(ut)‖2 > 2
√

kC
1−(2k−1)µb∞ and so OMP will select a correct variable at this step. On

the other hand, when the stopping rule is satisfied, all the variables in

S = {Xi : 1 ≤ i ≤ p, |βi| ≥ (
2k(1 + (k − 1)µ)

(1− (k − 1)µ)(1− (2k − 1)µ)
+

2
√

k

1− (k − 1)µ
)Cb∞}

are selected.

6.5 Proof of Theorem 8

Firstly, we will prove that with high probability (1 −M)Mt1 > 2Nt at any step t < k. It

can be seen that

Mt1 ≥ (k − t)−1/2‖X(ut)′st‖2 ≥ (k − t)−1/2λmin‖β(ut)‖2.

Since for any t < k, Nt = X ′(I − Pt)ε, it follows that

P (Nt ≤ σ
√

2(1 + η) log p) ≥ 1− 1
pη
√

2 log p
.

This means if

‖β(ut)‖2 ≥ 2
√

k − tσ
√

2(1 + η) log p

(1−M)λmin
,

with probability at least 1 − 1
pη
√

2 log p
, (1 −M)Mt1 > 2Nt and hence a correct variable is

selected at the current step. This is true when

|βi| ≥ 2σ
√

2(1 + η) log p

(1−M)λmin
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for some i ∈ T . Therefore under the conditions of the theorem, we can select all the k

correct variables at the first k steps with probability at least 1− k
pη
√

2 log p
.

We now consider the stopping rule. Suppose Nt ≤ σ
√

2(1 + η) log p for t = 1, 2, · · · , k,

which means the algorithm makes correct decisions at the first k steps. Now using the

same argument as in the proof of Theorem 4, it can be shown that for any t < k,

when Nt ≤ σ
√

2(1 + η) log p, the algorithm will not stop early. And when t = k since

Nk ≤ σ
√

2(1 + η) log p and all the correct variables have been selected, the stopping rule is

satisfied and hence the algorithm stops. So the probability of selecting exactly the correct

subset is at least

P (Nt ≤ σ
√

2(1 + η) log p for t = 1, 2, · · · , k)

≥ 1−
k∑

t=1

P (Nt > σ
√

2(1 + η) log p) ≥ 1− k

pη
√

2 log p
.

6.6 Proofs of the Technical Lemmas

Proof of Lemma 2: To prove the lower bound on λmin, it suffices to show that when

µ < 1/(k − 1), the matrix X(T )′X(T )− λI is nonsingular for any λ < 1− (k − 1)µ. This

is equivalent to show that for any nonzero vector c = (c1, c2, · · · , ck)′ ∈ Rk, (X(T )′X(T )−

λI)c 6= 0. Without loss of generality, suppose |c1| ≥ |c2| ≥ · · · ≥ |ck| and X(T ) =

(XT1, XT2, · · · , XTk). Then the first coordinate of the vector (X(T )′X(T )− λI)c satisfies

|{(X(T )′X(T )− λI)c}1| = |(1− λ)c1 + X ′
T1XT2c2 + · · ·+ X ′

T1XTkck|

≥ (1− λ)|c1| − µ(|c2|+ · · ·+ |ck|)

> (k − 1)µ|c1| − µ(|c2|+ · · ·+ |ck|) ≥ 0.

This means (X(T )′X(T )−λI)c 6= 0, and hence λmin ≥ 1− (k−1)µ is proved. By the same

argument, it can be shown that λmax ≤ 1 + (k − 1)µ.
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Proof of Lemma 5: From the standard result on the inverse of a block matrix, we

know that (X(ut)′(I − Pt)X(ut))−1 is a main submatrix of (X(T )′X(T ))−1. Therefore the

maximum eigenvalue of (X(ut)′(I − Pt)X(ut))−1 is less than or equal to the maximum

eigenvalue of (X(T )′X(T ))−1. Also the minimum eigenvalue of (X(ut)′(I − Pt)X(ut))−1

is greater than or equal to the minimum eigenvalue of (X(T )′X(T ))−1. The lemma then

follows.
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